חAmIBIA UחIVERSITY

OF SCIEПCE AПD TECHחOLOGY

FACULTY OF COMPUTING AND INFORMATICS

DEPARTMENT OF INFORMATICS

$\|$QUALIFICATION: Bachelor of Informatics Honours (with specialisations in Web Informatics and Business Informatics)
QUALIFICATION CODE: 08BIFH/08BIHB

\hline DATE: NOVEMBER 2022 \& MARKS: 60

\hline DURATION: 2 Hours \& \end{array}\right.\)

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S):	DR LAMECK MBANGULA AMUGONGO
MODERATOR (S):	MS EMILIA SHIKEENGA

THIS EXAMINATION PAPER CONSISTS OF 5 PAGES
(INCLUDING THIS FRONT PAGE)

Instructions for the students

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

Question 1: Short questions

a) True or False: When performing unsupervised learning we know the number of clusters beforehand.
b) True or False: Big data is initially characterized by 3 V : Volume, Veracity and Variety?
c) True or False: Data Science is the same as Data analytics.
d) True or False: Business can utilise insights from data to maintain competitive advantage.[1]
e) True or False: The below Figure is an example of Inferential statistics?

f) True or False: If two variables X and Y are correlated, then we must be able to specify the cause i.e, X is the cause or Y is the cause.
g) True or False: In a classification problem statement after training followed by testing, we get an accuracy of 99.7%, we can necessarily conclude that it is a good model.
h) Which of the following are correct about Activation Functions in neural network?
a. Derivative of a sigmoid activation function $g(z)$ is $g(z)[1-g(z)]$
b. Derivative of a hyperbolic tangent activation $k(z)$ function is $1-(k(z)) 2$
c. Derivative of a leaky RELU Activation function $\mathrm{h}(\mathrm{z})$ is 1
d. Derivative of RELU activation function $\mathrm{I}(\mathrm{z})$ is 0 for $\mathrm{z}<0$
i) Choose the correct option for residuals in Linear regression?
a. Residuals are horizontal offset, and the sum of residuals varies between $[0,1]$
b. Residuals are horizontal offset, and the sum of residuals can be unity.
c. Residuals are vertical offset, and the sum of residuals is always unity.
d. Residuals are vertical offset, and the sum of residuals is always zero.
j) Which of the following are correct related to the Confusion Matrix?
a. Confusion matrix is always a square matrix
b. Confusion matrix is a way to judge our classification model
c. Diagonal entries in a confusion matrix may be zero or non-zero
d. Confusion matrix is a symmetric matrix
k) Which of the following statements are correct for Support Vector Machines (SVM)?
a. A support vector machine is a machine learning algorithm that analyses data for both classification and regression analysis.
b. SVM is an unsupervised learning method.
c. An SVM finds the hyperplane which is having the largest margin value.
d. SVMs are used in text categorization, image classification recognition, etc.
I) Which is not a deep learning method:
a. Learning rate Decay.
b. Dropout.
c. Training from scratch.
d. Bootstrapping.
e. Transfer Learning.
m) If we have a date column in your dataset, then how will you perform Feature Engineering using Python? Hint: A date column, has lots of important features such as: day of the week, day of the month, day of the quarter, and day of the year etc.

Question 2: Apriori algorithm

A table has five transactions. Let the minimum support $(\min \sup)=60 \%$ and \min confidence $($ conf $)=$ 80\%.

ItemID	Items_bought
F100	\{Bread, Egg, Milk, Butter, Honey, Sugar\}
F101	\{Cereal, Egg, Milk, Butter, Honey, Sugar\}
F102	\{Bread, Bacon, Butter, Honey\}
F103	\{Bread, Jam, Cookie, Butter, Sugar\}
F104	\{Cookie, Egg, Egg, Butter, Cucumber, Honey\}

a) Find all frequent item sets using Apriori algorithm.
b) List all the strong association rules (with support and confidence).

Question 3: Classification

1. The table below illustrates the prediction for a model to predict Bankruptcy. Based the test set, calculate the evaluation measures.

No	Target	Prediction	No	Target	Prediction	No	Target	Prediction
1	Bankruptcy	Bankruptcy	8	No Bankruptcy	No Bankruptcy	15	Bankruptcy	Bankruptcy
2	Bankruptcy	Bankruptcy	9	Bankruptcy	Bankruptcy	16	No Bankruptcy	No Bankruptcy
3	Bankruptcy	Bankruptcy	10	Bankruptcy	Bankruptcy	17	Bankruptcy	No Bankruptcy
4	Bankruptcy	Bankruptcy	11	Bankruptcy	Bankruptcy	18	No Bankruptcy	Bankruptcy
5	No Bankruptcy	No Bankruptcy	12	No Bankruptcy	No Bankruptcy	19	No Bankruptcy	No Bankruptcy
6	Bankruptcy	Bankruptcy	13	Bankruptcy	Bankruptcy	20	No Bankruptcy	No Bankruptcy
7	No Bankruptcy	No Bankruptcy	14	No Bankruptcy	No Bankruptcy	21	No Bankruptcy	No Bankruptcy

a) Complete the confusion matrix.
b) Compute the misclassification rate.
c) Compute F1-measure
2. Consider the following 3-class confusion matrix:

Actual	Predicted				
		A	B	C	
	A	25	5	2	
	B	3	32	4	
	C	1	0	15	

a) What is the overall accuracy?
b) What can you say about Recall and Sensitivity?
c) What is the precision for class A?
d) What is the specificity of class C?

Question 4: Linear Optimisation

Pick n Pay Oshakati during the festive season combines two products rice and potato to form a gift pack which must weigh 5 kg . At least 2 kg of rice and not more than 4 kg of potato should be used. The net profit contribution to the Pick n Pay is Namibian dollars 5 per kg for Rice and $\mathrm{N} \$ 6$ per kg for potato. Formulate LP Model to find the optimal factor mix.
a) Formulate the objective function.
b) Formulate Constraints.
c) Non-negative constraints.
d) Summarise the optimization problem.

